
CSCI 210: Computer Architecture

Lecture 18: Arithmetic Logic Unit

Stephen Checkoway

Oberlin College

Nov 12, 2021

Slides from Cynthia Taylor

1

Announcements

• Problem Set 5 due tonight

• Lab 4 due Sunday

• Office Hours today 13:30 – 14:30

3-to-8 input multiplexer

Scaling Up

• Have to perform combinatorial operaIons over an enIre word
(32-bits) of input.

• Bus: a collecIon of data lines that is treated together as a
single logical signal.

• Example: A mulIplexer is used to choose which of the two
buses (each 32 bits wide) will be wriRen into the Result
register

Replicating a 1-bit Multiplexer 32 times

We want to choose which 32-bit bus value gets

written to a register. Will the select value be the

same for each 1-bit multiplexer?

A. Yes

B. No

ALU: Basic Problem

• Need to use digital logic to build a unit that can do basic

computation – math, logical operations, etc.

• Needs to be 32 bits wide, since MIPS has 32 bit words.

– Build out of 1-bit ALUs

Our ALU will support the following instructions:

• Add/Addi

• Sub

• Or/Ori

• And/Andi

• Nor/Nori

• Nand/Nandi

• Set less than

1-bit ALU: AND and OR

• Inputs go to both AND and OR

• Multiplexer selects AND or OR function for output

1-bit Binary Adding

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 10

Need to account for two output bits!

Half Adder

• Inputs a, b

• Outputs sum and carry out.

• Sum is the result of adding a and b.

• Carry out is the overflow bit.

Below is the truth table for the SUM output of a half adder.

What is the Boolean algebra function that will give us this truth

table?

A. a OR b

B. a XOR b

C. a AND b

D. a NOR b

E. None of the above

a b Sum

0 0 0

0 1 1

1 0 1

1 1 0

Below is the truth table for the CARRY output of a half adder.

What is the Boolean algebra function that will give us this truth

table?

A. a OR b

B. a XOR b

C. a AND b

D. a NOR b

E. None of the above

a b Carry out

0 0 0

0 1 0

1 0 0

1 1 1

Binary Addition with Arbitrary Number of Bits

• Just like regular, grade school addiIon

– Make sure we carry a 1 to the next digit when needed

• Now we need to be able to account for the carry-in from the

next least-significant bit

• Example: 7+5

Full Adder from Half Adders

• Need carry-in, as well as carry-out

What if both half adders have carry-out?

A. We will get the wrong answer.

B. We will ignore it, the answer
will still be correct.

C. That will never happen

D. None of the above

Ripple-Carry Adder

• Create adder for an arbitrary number of bits simply by
connecting carry-out from adder n-1 to the carry-in for adder n

• Carry bit “ripples” up

1-bit ALU

SubtracNon: a − b

• Just add negative version of b!

• To negate operand, transform to two’s compliment

– Invert each bit

– Add one

We can use a NOT gate to invert the input. To add

one to the input, we should

A. Set the carry-in for the least significant bit to 1.

B. Add a new “subtract” input that we set to 1 for subtraction.

C. Do something else.

1-bit ALU with Subtraction

Adding NOR

• Want to add NOR funcIonality

• DeMorgan’s Law

– (A+B) = AC BC

To add NOR to the ALU, we need to add

A. Nothing

B. The ability to invert A

C. A NOR gate

D. Something else DeMorgan’s Law

(A+B) = Af Bf

1-bit ALU with NOR

Adding slt

• slt rd, rs, rt

– rd = 1 if rs < rt, and 0 otherwise

• Only sets least significant bit

– All other bits are 0

1-bit ALU: Add new input for slt

In all but the least significant bit,

Less will always be 0

How do we tell if a < b?

• Subtract b from a

• If a – b < 0, then a < b

• We can check this by checking the most significant bit

– MSB = 1, a < b

• Problem: Output is at Most
Significant Bit, we need it at
Least Significant Bit

• SoluIon: Special ALU for Most
Significant Bit, with output for
SLT

• Hook SET output into LESS input
for Least Significant Bit

1-bit ALU for the Most Significant Bit

This doesn’t

always work!

You’ll fix it in

problem set 6

Recall: Overflow

• If we add two n-bit numbers, we may end up with a n+1 bit

number

• Hardware can detect this

a and b have different signs. Will adding them ever

result in overflow?

A. Yes

B. No

Adding overflow detecNon

• Only need to check if a and b have the same MSB

• If MSB is different from carry out, then there will be overflow

To check if the MSB is different from the carry out,

check if

A. MSB AND Carry == 0

B. MSB OR CARRY == 1

C. MSB NOR CARRY == 0

D. MSB XOR CARRY == 1

E. None of the above

Reading

• Next lecture: Clocks, Latches and Flip flops

– 3.6

• Problem set 5

– Due Tonight

• Lab 4

– Due Sunday

34

