CSCI 210: Computer Architecture
Lecture 18: Arithmetic Logic Unit

Stephen Checkoway
Oberlin College

Nov 12, 2021
Slides from Cynthia Taylor

Announcements

* Problem Set 5 due tonight

* Lab 4 due Sunday

e Office Hours today 13:30 - 14:30

3-to-8 input multiplexer

) L

’ W

f =

Ds }

) |

’ A|A[B|B|C|C D—
AAIR

Scaling Up

* Have to perform combinatorial operations over an entire word
(32-bits) of input.

* Bus: a collection of data lines that is treated together as a
single logical signal.

 Example: A multiplexer is used to choose which of the two
buses (each 32 bits wide) will be written into the Result
register

Replicating a 1-bit Multiplexer 32 times

Select Select
A 2\~ A3l —
u [f2\ec ——= C31
CE AT B31
A30 —
C30
B30 —

AQ —*

c =S

co

BO —

a. A 32-bit wide 2-to-1 multiplexor b. The 32-bit wide multiplexor is actually an array
of 32 1-bit multiplexors

We want to choose which 32-bit bus value gets
written to a register. Will the select value be the
same for each 1-bit multiplexer?

Select

* A 2\. y aor—~(
u [2\e ¢ u (= cat
B &\ ¥ B31 —=|

B. No

2

DWC

u — C30
B30 —={ X] :
AQ —=
co
B0 —*
a. A 32-bit wide 2-to-1 multiplexor b. The 32-bit wide multiplexor is actually an array

of 32 1-bit multiplexors

ALU: Basic Problem

* Need to use digital logic to build a unit that can do basic
computation — math, logical operations, etc.

* Needs to be 32 bits wide, since MIPS has 32 bit words.
— Build out of 1-bit ALUs

Our ALU will support the following instructions:

o Add/Addi

e Sub

* Or/Ori
 And/Andi

* Nor/Nori

* Nand/Nandi
* Set less than

1-bit ALU: AND and OR

:

I Bt

3— Result
) O\

Hh—e—»

* |Inputs go to both AND and OR

 Multiplexer selects AND or OR function for output

1-bit Binary Adding

0+0=0
O+1=1
1+0=1
1+1=10

Need to account for two output bits!

Half Adder

Inputs a, b
Outputs sum and carry out.
Sum is the result of adding a and b.

Carry out is the overflow bit.

Below is the truth table for the SUM output of a half adder.
What is the Boolean algebra function that will give us this truth

table?

a |b [sum

0 0 0

0 1 1

1 0 1

1 1 0
A. aORDb

D. aNORD

B. aXORDb

E. None of the above
C. aANDD

Below is the truth table for the CARRY output of a half adder.
What is the Boolean algebra function that will give us this truth

table?

o T lmyou

0 0 0

0 1 0

1 0 0

1 1 1
A. aORDb

D. aNORD

B. aXORDb

E. None of the above
C. aANDD

Binary Addition with Arbitrary Number of Bits

 Just like regular, grade school addition

— Make sure we carry a 1 to the next digit when needed

* Now we need to be able to account for the carry-in from the
next least-significant bit

 Example: 7+5

Full Adder from Half Adders

HA

out | < L Cin

HA

S

* Need carry-in, as well as carry-out

What if both half adders have carry-out?

. We will get the wrong answer.

a b
. We will ignore it, the answer HA
will still be correct.
COUt_—Gi Cin
HA
. That will never happen Bl

. None of the above

Ripple-Carry Adder

3 3 2 59 1 ™1 0

full full full full c.
4| adder | ¢ adder [¢, | adder [¢, | adder (S, in

Cout C

B S
>3 2 S 0

* Create adder for an arbitrary number of bits simply by
connecting carry-out from adder n-1 to the carry-in for adder n

* Carry bit “ripples” up

1-bit ALU

Operation
Carryin

i

a ——0—>__\ /D

‘_
1 » Result
A
1 + 2

Subtraction:a-b

* Just add negative version of b!

* To negate operand, transform to two’s compliment

— Invert each bit
— Add one

We can use a NOT gate to invert the input. To add
one to the input, we should

A. Set the carry-in for the least significant bit to 1.
B. Add a new “subtract” input that we set to 1 for subtraction.

C. Do something else.

1-bit ALU with Subtraction

Binvert Operation
Carryin

0

.

» Result

!
\
- + =t

CarryOut

Adding NOR

 Want to add NOR functionality

* DeMorgan’s Law
— (A+B)=AB

To add NOR to the ALU, we need to add

A. Nothing

=
-
B. The ability to invert A | 7\2 |

!
SjiSERS
C. ANOR gate

D. Something else

DeMorgan’s Law
(A+B)=AB

1-bit ALU with NOR

Ainvert Operation
Binvert Carryln

-
1 » Result

Y
CarryOut

Adding slt

* slt rd, rs, rt

—rd=1ifrs<rt, and O otherwise

* Only sets least significant bit
— All other bits are 0

1-bit ALU: Add new input for slt

. g PRy g
Ainvert Operatio

Binvert Carryln

In all but the least significant bit,
Less will always be O

* Result

Less

A
w

How do we tell ifa< b?

e Subtract b from a

e fa—b<0,thena<b

* We can check this by checking the most significant bit
—MSB=1,a<b

Carryln

Y

a0 —=| Carryln * Result0
b0 — ALUO
* Problem: Output is at Most (g =
Significant Bit, we need it at | 1 _
Least Significant Bit i), Toai - Result
b1 —» ALU1
00— Less
CarryOut

* Solution: Special ALU for Most |)¢ 1NN
Significant Bit, with output for o 0 T
SLT | anyo
T
* Hook SET outputinto LESSinpu | - 'Ca}rym : - Result31
for Least Significant Bit L"“’Ji A — o T

ﬂ

Y

1-bit ALU for the Most Significant Bit

Ainvert Operation
| Binvert Carryin
LT
(=IDgsk
: { ~ Result
b D This doesn’t
1 always work!
UL —""vou'll fix it in
T o problem set 6
Overflow * QOverflow

detection

Recall: Overflow

* |f we add two n-bit numbers, we may end up with a n+1 bit
number

e Hardware can detect this

a and b have different signs. Will adding them ever
result in overflow?

A. Yes

B. No

Adding overflow detection

* Only need to check if a and b have the same MSB

* |f MSB is different from carry out, then there will be overflow

To check if the MSB is different from the carry out,

check if
A. MSB AND Carry ==

B. MSB OR CARRY ==
C. MSB NOR CARRY ==
D. MSB XOR CARRY ==

E. None of the above

Reading

* Next lecture: Clocks, Latches and Flip flops
— 3.6

* Problem set5
— Due Tonight

e Lab 4
— Due Sunday

